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5. I1 serait interessant de suivre le mdcanisme des 
ddformations des monocristaux lors de la courbure;* 
inddpendamment  de son intdrgt thdorique, cette dtude 
serait utile pour prdciser les conditions opt ima de 
prdparat ion des monochromateurs.  

On salt que des cristaux d ' a lumin ium ldg~rement 
ddformds peuvent  montrer  des taches de Laue focalis6es 
sur lesquelles l 'existence de stries indique l 'dtat  de sub- 
division du monocristal  global en petits blocs mono- 
eristallins ldgbrement ddsorientds, appel6 'Polygonisa- 
t ion '  (Orowan, 1947; Guinier & Tennevin,  1949; Calm, 
1949.) 

Une premibre dtude de monocris taux courb6s 
d ' a lumin ium qui dolment  des raies spectrales flues sur le 
cylindre de focalisation de 40 cm. de diam~tre, ne nous 
a pas permis d'observer des stries sur des taches de Laue 
focalisdes ~ 25 cm. 13 faut  remarquer  que des cristaux 
courbds ne doivent pas gtre fortement polygonisds pour 
qu'ils donnent  une bonne focalisation en rayonnement  
monochromatique.  Le cristal plastique courbd le plus 
convenable pour la spectroscopie peut  gtre schdmatis6 
comme suit: les dislocations provoqudes par  la courbure 
sont distribudes uniformdment  de telle sorte que le 
hombre des plans rdticulaires normaux aux faces de la 
lame croit rdguli~rement, depuis la face concave jus- 
qu'~ la face convexe. 11 est probable que la courbure 
introdui t  des dislocations irrdgulibres d 'oh rdsultent des 
ddformations locales tr~s fortes. Le recuit  produirai t  
une rdorganisation telle que les dislocations se rdpartis- 
sent d 'une  mani~re ~ peu prbs uniforme. S'il e n e s t  
ainsi, les lames plastiques utilisables seraient des 
ddifices ~ constantes rdticulaires invariables ~ travers 

* Yon & Hibbard (1949) viennont de publier quelques 
r6sultats obtenus sur des cristaux d'aluminium courb6s par 
application d'une tension en deux points; l'6~ude aux rayons i 
a 6t6 faite seulement par des diagrammes de Laue. 

l 'dpaisseur, k nombre  croissant de plans rdtieulaires 
normaux,  vers la face convexe. Tandis  que les lames 
dlastiques courbdes fonctionnent comme des ddifices 
constantes rdticulaires variables en fonction de l'dpais- 
seur, oh une fibre neutre moyenne conserve seule les 
caract~res du cristal non ddformd. 

Les lames d ' a lumin ium planes ou ddformdes sent done 
susceptibles d 'emplois avantageux duns la technique 
des rayons X. Leur application peut  6tre dtendue 
d 'autres  rayonnements .  

, L 'un  de nous (Tiedema) a bdndficid d 'une subvent ion 
de la Fondat ion  frangaise ' l 'Aide  ~ la Recherche 
Scientifique'  pour un sdjour ~ Paris. Les Etabl issements  
Chenaille ~ Paris (St. Cloud) ont construit, ~ t i t re  
gracieux, la p lupar t  des moules et porte-cristaux 
employds dans ce travail .  
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The inequalities derived by Karle & Hauptman are discussed in more detail. The simplifications re- 
sulting from symmetry are studied, and it is shown that  the relations derived by Harker & Kasper 
are only those that  correspond to the totally symmetric representation of the point group. In  the 
discrete-atom approximation, part  of the inequalities reduces to equalities, special cases of which 
have been reported earlier by  Banerjee and by Buerger. 

Introduction 
B y  subst i tut ing the analyt ical  expression of the  
structure factor for the various symmetries  in Schwarz's 
inequali ty,  Harker  & Kasper  (1948) obtained a number  
of relations tha t  l imit  the real par t  of some structure 

factors in terms of the magni tudes  of others. I n  a 
generalization of this work Karle  & H a u p t m a n  (1949) 
have shown that ,  independent  of the symmetry ,  a set of 
inequalit ies involving structure factors can be derived 
from the fact  tha t  the electron density must  be non- 
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negative. This assumption is found to be implicit in the 
t reatment  by Harker & Kasper. 

In  the present paper the application of symmetry 
conditions to the Kar le-Hauptman treatment  is dis- 
cussed. To facilitate the introduction of symmetry 
operations the basic inequality is first derived in a 
slightly modified way. 

In the last section it will be shown that  the usual 
assumption of discrete atoms not only considerably 
increases the power of the inequalities, but reduces 
some of them to equalities. 

1. Mathematical preliminaries 
If  f(r)  and g(r) are functions of the position vector in 
ordinary space r, both piecewise continuous, the scalar 
product of the function-vectors f and g is defined as 

(f.g)=ff* (r)g(r)dr, (1-1) 

where the integration is over the unit cell.:~ I t  follows 
tha t  (g.f) = (f. g) . .  (1.2) 

In particular we have 

(f. f) =.If* (r)f(r) d~/> 0. 0"3) 

We now introduce a set of (n + 1) different functions 
vV(r) (p=0 ,  1, .. . ,n), and suppose f(r)  to be a linear 
combination of these 

f(r)  = ~ xV* vV(r)=x~, v(r), (1.4)§ 
p = 0  

Here x and v(r) are (n + 1 ) × 1-dimensional matrices with 
elements x p and vv(r) respectively. We expand the left 
side of the inequality in (1.3) in terms of the v v and find 

0 <. ~ ~ x v* (vq.v v) xq, (1"5) 
p = 0 q = 0  

or, more concisely, 0 ~< x t .  F .  x, (1.6) 

where the elements of the (n + 1) × (n + 1) matrix F are 

Fq~= (vq.vv). (1.7) 

From (1.2) we see that  this matrix is hermitian: 

Fqv= F~*. (1.8) 

The inequahty (1.6) has to hold for any x and is therefore 
equivalent to the (n + 1) inequalities 

0~<detC~)F (m=0 ,1 , . . . , n ) ,  (1.9) 

where the determinants in the right are formed from 2' 
by omitting all but the first (m + 1) rows and columns. 
Various other ways of stating this result will be found 

$ See, for example ,  Murnaghan  (1948). The f tmct ion-vec tor  
concept  is a t  first in tended  as noth ing  b u t  a convenient  nota-  
t ion. I n  the  last  sect ion it will help to m a k e  clear the  ana logy 
be tween  the  cont inuous-dens i ty  and d iscre te-a tom t rea tments .  

§ Matr ix  e lements  are labeled according to the  following 
convent ion :  A~ is the  e lement  of  ma t r i x  A in row p, colmrm q. 
The ad jo in t  ma t r i x  A t has e lements  ~A)+V--A q* Art m ×n  

• . ' ~  / q q  V • 

mat r ix  is unde r s tood  to have  m rows and  n columns.  The 
e lements  of  co lumn vec tors  car ry  a single superscript .  
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useful in this paper. I f  F is part ly diagonal, i.e. 

F = diag (Fz, F~ ... .  , -F i , . . . ,  F k ) ,  (1 '10)  

then (1.9) is replaced by similar sets of inequalities for 
each of the smaller matrices Fi. In particular, if F is 
completely diagonal (or brought into that  form by a 
transformation), we have for the characteristic numbers 

O<.A m (m=O, 1,. . . ,n).  (1-11) 
The last set of inequalities can of course also be obtained 
directly from (1.6) by substituting successively all the 
characteristic vectors xm, defined by 

F . x m = A ~ x ~  (m=O, 1,. . . ,n).  (1.12) 

Finally, the trace T i of the determinants Fi, being equal 
to the sum of their characteristic numbers, must also be 
non-negative. 

2. The Karle-Hauptman treatment 
Let H~ ( p = 0 , 1 , . . . , n )  (2.1) 

be a set of different reciprocal-lattice vectors and p(r) 
the electron density. Then we may take for the functions 

vV(r) vV(r) =p(r)½ exp [27rills. r]. (2.2) 

By substituting this in (1.7). making use of the fact tha t  

p(r)~>0, (2.3) 
we find for the elements of the matrix F 

F, =fp(r) exp [27ri(H v - H¢). r] dz = F~tp_aq, (2.4) 

which are the Fourier coefficients ofp(r) associated with 
the reciprocal-lattice points H v -  H a (p, q = 0,1, ..., n). 
Thus (1.9) gives us (n+  1) inequahties involving these 
structure factors. For each new reciprocal-lattice vector 
that  is added to the set H v one more inequahty is ob- 
tained. Apparently no generahty is lost if we take 
H 0 = 0, since differences only of the vectors H~ occur in 
the determinants. 

In Karle & Hauptman 's  paper, expansions are given 
for the determinants leading to expressions tha t  limit 
FHm to a circle in the complex plane, the center and 
radius of which are functions of the remaining structure 
factors. Furthermore, it is shown that  if the Fourier 
coefficients obey (1.9), the electron density is non- 
negative. 

I t  should be noted that  any system of inequalities 
(1.9) contains the trivial relation 

0 ~< det¢°)F = F ° = F 0. (2.5) 
I t  may be factored out by carrying out the first step of 
the diagonahzation process 

P t - F .  P = diag (F0, G), (2.6) 

/ 1 00 it0 - F H , / F  o 1 0 . 

P =  --FHJF o 0 1 . (2"7) 

-- Fr~JF o 0 0 . 

F n p F ~  (p ,q=l ,2 , . . . , n ) .  (2.8) 
and G~=F~p_H~ Fo 

24-2 
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The remaining n inequalities are obtained by forming 
determinants from the elements of G, 

0 < det(~)F (m= l, 2, ..., n) (2.9) 

or 0 ~ Yt- G. y (2-10) 

for any y. Nearly all the inequalities derived by Harker 
& Kasper can be obtained from (2.10) by substituting 
numerical values for the coefficients yr. 

3. Special choices for the vector set H~ 
In tho relations (1.9) the ( m + l )  diagonal elements 
obviously are all F 0. For each structure factor on one 
side of the diagonal, its complex conjugate appears on 
the opposite side. The number of different structure 
factors, excluding F0, therefore is ½m(m + I). However, 
this number is a maximum and may be considerably 
reduced by a special choice of the vectors Hv, in either of 
two ways: 

(A) Reduction of the number of different vectors 
H v - H q .  For example, ff in the case m =  3, which in 
general involves the 6 different reciprocal-lattice points 

Hi '  } 
H~ H2- Hi, (3"1) 

Ha Ha--H i Ha-H2, 
we take Ha=H2+Hi, this number is reduced to 4: 

Hi' 1 
H z H~-Hi, (3"2) 

Hg,+H1 H2 Hi . )  
(For this system, the two inequalities 

(HH~ ± Flt~)~ ~< (F0 + FIt~÷H1)(F0 +_ FH~_It~)(3.3) 

hold ff the structure factors are real. They were used by 
Gillis (1948) in the case of oxalic acid dihydrate.) 

As no two of the vectors H v can be equal, the minimum 
number of different vectors H v - H q  is m. This limit is 
reached by making the special choice 

Ho=0, H v = p . H ,  (p=l ,2 , . . . ,n ;  H # 0 ) ,  (3.4) 

for then each of the vectors 

H ~ - H q = ( p - q ) . H  (3.5) 

belongs to the set (3-4). The resulting inequalities could 
of course be equally well derived from the fact that  the 
projection ofp(r) on a line in the direction H must be a 
non-negative function. 

(B) A choice of the H~ such that some of the reci- 
procal-lattice vectors H ~ -  H a are related by symmetry. 
Then, of course, the corresponding structure factors are 
no longer independent. 

4. Use of symmetry conditions 
Though the principle, referred to at the end of the last 
section, may be applied in many different ways, we shall 
discuss here only the very special choice 

H0=0,  H ~ = ¢ v . H  (p=l ,2 , . . . , s ;  H # 0 ) ,  (4.1)$ 

Zaehariasen 's  (1945) no ta t ion  for s y m m e t r y  operat ions is 
used. 

where the ¢~ are the symmetry operations of the point 
group (or one of its subgroups) and s is its order. The 
functions v~(r) as defined by (2-2) are now of the form 

v°(r)=p(r) ½ ) 
vv(r)=p(r)texp[2~iCv.H.r]I (p=l ,2  .... ,s). (4.2) 

However, it will be found useful to introduce a different 
set of functions 

w°(r) =p(r)~ } 
wv(r)=p(r)texp[2niH.r.S~ ] ( p = l , 2  . . . .  ,s), (4.3) 

where the Sv are the operations of the space group, 
related to those of the point group by 

S~= [¢~, t~], (4-4) 

i.e. r . S~=r .  Cv+t~. (4.5) 

The relation between the vV(r) and wV(r)is therefore 

w°(r) =v°(r), [ 
(4-6) 

wV(r) = vV(r) exp [27rill. t~]. ! 
Keeping in mind that  p(r) is invariant under any Sv, 

p(r.S~) =p(r),  (4-7) 

we find the following expressions for the matrix elements 

F~: (w 0. w0) = F0, (4-8) 

=.!p(r) exp [27rill. r .  Sv] dr = F a ,  (4.9) (w0. w p ) 

fp(r)  exp [2~riH. r .  (S~-  Sq)] (Wq. w ~ ) dT 

= Ip(r) exp [2niH. r .  (S~- E)] dr 

=~v(¢rI). H exp [2niH. L]. (4-10i 

In the last equation 

E=[1 ,0 ]  (4.11) 

is the identity operation and Sr is related to S v and Sq by 

S~=Sq.S,.. (4-12) 

There are of course ( s -  1) structure factors of the type 
F¢¢,-I).5, some of which may be equal, and thus the 
total number of structure factors in the equations 
(4.8--4.10), not counting F0, is s. In this section a set of 
inequalities will be derived, each of which contains all 
these structure factors and includes earlier Harker-  
Kasper relations. A simpler set, more suitable for 
practical application, will be discussed in the next 
section. 

To transform F,  we introduce a set of s new functions 
by making linear combinations of the 

wv(r) (:p = 1, 2 . . . .  , s), 

~ilT= s ] i=1,2 .... ,k). (4-13) 

Here [Fi(q~v)]~ is a n  element of the l~ x 1 i dimensional 
matrix corresponding to Cv in the ith irreducible repre- 
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sentation F~ of the point group; k is the number of 
classes. The matrix elements obtained from these new 
functions are 

8 8 
(zy~.zf~)= Z Z [r,(¢~)]$.[r~(¢o)][*.(w~.w~). (4.14) 

p = l  q = l  

We write Cv as the product of Cq and ¢, according to 
(4-12) ~ 

F v [ri(¢~)]~= Z [ri(¢q)]~.[ i(¢~)]~, (4d5) 

and use (4.11), finding 

(zy~.z~p)= Z Z [r~(¢~)]~*.[r~(¢~)]~ Z [r~(¢~)]~ 
v = l q = l  r = l  

× F(¢~_i).Hexp [2niH.t~]. (4.16) 

The sum over q is at once found from the orthogonality 
relation 

8 
[rj(¢~)]~* • [r~(¢o)]~ = ~ ~  ~, (4.17) 

q = l  

where the 3's are Kronecker symbols, and so finally 
8 s 

tz _ 6 F 
r = l  

× exp[2~riH.tr] (4.18) 

(~,fl, y,e=l,2,...,l~; i,j=l,2,...,k). 
has the Thus the matrix formed from the functions z~ 

form diag (F~, F 2 .. . .  , Fi,..., F~), 

where the matrices F i are of dimension l~ × l~. Their trace 
is easily found 

ct=l  f l = l  
I~ l~ 8 s 

= ~ ~ ~ [Fi(¢~)]~.F(¢rZ).Hex p[2niH.t~] 
ct=l  f l = l  ~iir=l 

8 
=s ~ Xi(¢r).Ftcrzi.Hexp[2~riH.t~], (4.19) 

r = l  

where Xi(¢~) is the trace (character) of Fi(¢r ). These 
quantities must be non-negative, 

0 ~< ~ X~(¢~) F(¢~_~).~ exp [2niH. tr]. (4.20) 
r=l 

This set of inequalities may be strengthened somewhat 
by adding our original function w°(r) to the set (4.13)• 
The additional matrix elements are rapidly found from 
(4•8) and (4.9)" 

(w 0" w 0) = F0, (4.21) 

(w°.z~) = ~ [ri(¢~)]~FH=3i~sFH. (4•22) 
r = l  

(F 1 is understood to be the totally symmetric representa- 
tion.) Fx is thus enlarged to a matrix of dimensions 
2 × 2. From the non-negativity of its determinant we 
have (wO • z~) ( z l .  w o) ~< (wO• w o) ~ • .(z u . z n )  , (4"23) 

o r  

s~. [ FH I~ <~ s.Fo" ~ F(¢_~).sexp[2~riH.t~]. (4.24) 
r = l  
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This inequality is stronger than the first one of the set 
(4.20), which differs from it in that  the left side is zero. 
I t  may be included in the complete set by writing 

1 
3~,. ]F~ 12~< - ~ Xi(¢~)F(¢r-zI.Hexp [2niH.t~] 

8r=l 
( i=  1,2, ..., k). (4.25) 

The first of these relations is easily recognized as the 
general form of a large class of Harker-Kasper  in- 
equalities.:~ The remaining inequalities have been 
ignored by these authors• All may be found directly 
from (2.8) and (2.10) by substituting (4.1) and yv=  X~(¢~). 

5. Inequalities involving a single phase angle 
I t  was shown in § 3 that,  in the absence of symmetry,  the 
number of different structure factors in the inequalities 
(1•9) is at least m. However, the relation for m = 1 does 
not give any information on the phase of the single 
structure factor it contains, 

0~< FHF° 1 F 0 F~I ' (5.1) 

and we may therefore state that  no restrictions on single 
phase angles can be found. The inequalities lead only to 
relations between two or more phase angles. 

Independent phase-angle determinations are no 
longer impossible ff the crystal possesses symmetry• 
The necessary inequalities follow from the fact that  each 
of the 3 x 3 determinants with elements F ~ =  (wq. wV) 
(p. q = 0, 1, r, where r # 0 or 1 and S 1 is understood to be 
the identity operation E) of the matrix F discussed in 
the last section is non-negative, 

, Fo F* ~ F* i 
0 ~< F H F 0 F~r-z) .H exp [-- 21rill. tr] 

FH FtCr-I).H exp [2niH. t r ]  F 0 

( r=2 ,  3, ...,s). (5-2) 
This may be written 

F(¢r-l)'Hexp[2niH'tr]-Fo -~oFHI2[~<I-- F00 ' FH 9 (5•3) 

or, in all cases where Fief_i) "~ exp [2niH. tr] is real, 

F00 FH 2 ~<2+21 1 F(¢,_r) " F °  H exp [27rill.L]. (5•4) 

Inequalities of this type may be used to determine the 
phase angles of structure factors F(¢r_I) "H independent 
of any other phase angle• They are more suited for 
practical application than the rather complicated set 
(4.25), where each inequality contains all these structure 
factors. (As a matter  of fact, the k relations (4.25) 
contain more than k different structure factors F ( ¢ r i i .  H 
if one or more classes contain symmetry operations with 
different rotation axes; in these cases the relations (4•25) 
may be made equivalent to (5.4) by the addition of the 
inequalities of type (4.25) for the various subgroups.) 
Clearly, for s = 2 the two sets are identical• 

A d i rec t  g e n e r a l i z a t i o n  o f  H a r k e r  & K a s p e r ' s  t r e a t m e n t  
has  been  g i v e n  b y  M a c G i l l a v r y  (1950). 
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6. Equalities 

From the first paper of Harker & Kasper on, use has 
been made of the fact that  the inequalities can be con- 
siderably strengthened by assuming the electron- 
density function to be the superposition of spherically 
symmetrical atomic-density functions, 

N 

p ( r ) =  ~] z~.~(I r - r ~  I), (6-1) 
j = l  

where N is the number of atoms, Z~ the atomic number 
and r~- the position of a tomj .  Instead of the F m unitary 
factors are then introduced, 

N 

U H = ~] n~ exp [27rill. r~], (6.2) 
i=1 

Z~ (6.3) where n~ ---- N 

ZZ~ 
i - - 1  

is the fraction of the electrons that  belongs to the j t h  
atom. I f f (H)  is the Fourier transform of ~(r), the rela- 
tion between the F~ and U~ is 

U H -  FH (6.4) 
N " 

/(H) Z z~ 
i = 1  

• We now introduce the (n+ 1) × _N-dimensional matrix v 
with elements 

v~=n~exp[27riH~.r~] ( p = 0 , 1  . . . .  ,n; j =  I, 2, ..., N), 

(6.5) 

and another matrix, of dimension (n + 1) × (n + 1), 

U=v.v~.  (6-6) 

Let the rows of v be denoted by v~, then 

N 

U~=v~'vq~ = Z v~ v~.*, (6-7) q .  • 

j = l  

and by substitution of (6.5) and (6.2) 

U~= UH~_aq. (6.8) 
Thus U is analogous with the matrix F,  defined in (2.4), 
but  its elements are the uni tary structure factors 
(Fourier coefficients of the atomic peak function) in the 
reciprocM-lattice points H ~ -  H a. The same inequalities 
hold therefore. However, U has the additional property 
(6.6) [compare also (6-7) with (1.7)] and as a consequence 
of this 

det (~) U = det (~) (v. v~) i> 0 if m < N 

= 0  if m~>N. (6-9) 

(To show this, one writes 

x t .  V . x = x ~ . v . v ~ . x =  (v~.x)~. (v~ .x )=Yt .Y  >t 0; 
(6.10) 

then, if v~ has more columns than rows, an x:~0 can 
always be found such that  y = v ~ . x =  0; this requires 
U. x = 0 for x :~ 0 and thus det U = 0.) 

This result may be stated: ff in our original set of 
inequalities (1.9) the FHp ~ are replaced by uni tary  - -  q 

structure factors, those with m t> N reduce to equalities. 
Special cases of these equalities have already been 

described earlier: 
(a) For the particular choice (3.4) for the base vectors 

H~ we have Uq ~= Uc~-a).H (6.11) 

and the equality with m = N  of the set (6.9) is the 
general form of the equations derived by Banerjee 
(1933). 

(b) I f  there is one atom per asymmetric unit, i.e. 
N = s ,  and we choose the set (4.1) (i.e. n=s),  the 
determinant of the matrix F in § 4 must be zero. Con- 
sequently, the equality sign must hold in at  least one of 
the relations (4-25). I t  has already been shown by 
Buerger (1948) tha t  this is the case for the first of these 
relations. 
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