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5. 1l serait interessant de suivre le mécanisme des
déformations des monocristaux lors de la courbure;*
indépendamment de son intérét théorique, cette étude
serait utile pour préciser les conditions optima de
préparation des monochromateurs.

On sait que des cristaux d’aluminium légérement
déformés peuvent montrer des taches de Laue focalisées
sur lesquelles I'existence de stries indique 1’état de sub-
division du monocristal global en petits blocs mono-
cristallins légérement désorientés, appelé ‘ Polygonisa-
tion’ (Orowan, 1947; Guinier & Tennevin, 1949 ; Cahn,
1949.) _

Une premiére étude de monocristaux courbés
d’aluminium qui donnent des raies spectrales fines sur le
cylindre de focalisation de 40 cm. de diameétre, ne nous
a pas permis d’observer des stries sur des taches de Laue
focalisées & 25 cm. Il faut remarquer que des cristaux
courbés ne doivent pas tre fortement polygonisés pour
qu’ils donnent une bonne focalisation en rayonnement
monochromatique. Le cristal plastique courbé le plus
convenable pour la spectroscopie peut &tre schématisé
comme suit: les dislocations provoquées par la courbure
sont distribuées uniformément de telle sorte que le
nombre des plans réticulaires normaux aux faces de la
lame croit réguliérement, depuis la face concave jus-
qu’a la face convexe. Il est probable que la courbure
introduit des dislocations irréguliéres d’ol résultent des
déformations locales trés fortes. Le recuit produirait
une réorganisation telle que les dislocations se répartis-
sent d’une maniére & peu prés uniforme. S’il en est
ainsi, les lames plastiques utilisables seraient des
édifices & constantes réticulaires invariables & travers

* Yen & Hibbard (1949) viennent de publier quelques
résultats obtenus sur des cristaux d’aluminium courbés par
application d’une tension en deux points; ’étude aux rayons X
& 6t6 faite seulement par des diagrammes de Laue.
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I’épaisseur, & nombre croissant de plans réticulaires
normaux, vers la face convexe. Tandis que les lames
élastiques courbées fonctionnent comme des édifices &
constantes réticulaires variables en fonction de 1’épais-
seur, ou une fibre neutre moyenne conserve seule les
caractéres du cristal non déforms.

Les lames d’aluminium planes ou déformées sont donc
susceptibles d’emplois avantageux dans la technique
des rayons X. Leur application peut étre étendue &
d’autres rayonnements.

+ L’un de nous (Tiedema) a bénéficié d’une subvention
de la Fondation frangaise ‘I’Aide & la Recherche
Scientifique’ pour un séjour & Paris. Les Etablissements
Chenaille & Paris (St. Cloud) ont construit, & titre
gracieux, la plupart des moules et porte-cristaux
employés dans ce travail. :

Bibliographie

Canw, R. W. (1949). J. Inst. Met. 76, 121.

CavucHors, Y. (1932). J. Phys. Radiwm, (7), 3, 320.

CaucHors, Y. (1933). J. Phys. Radium, (7), 4, 61.

Cavucsors, Y. (1934). Ann. Phys., Paris, (11), 1, 215.

CaucHors, Y. (1945). J. Phys. Radium, (8), 6, 89.

CavcHors, Y. (1949). New Developments in Bent-crystal
Techniques. Congrés, ‘Instruments and measurements’,
Stockholm.

CaucHors, Y. & McTaccart, K. (1949). C.R. Acad. Sci.,
Paris, 228, 1720.

GUINIER, A. & TENNEVIN, J. (1949). Acta Cryst. 2, 133.

Joraww, H. H. (1931). Z. Phys. 69, 185.

Jomansson, F. (1933). Z. Phys. 82, 507.

Orowan, E. (1947). Congrés de la Société francaise de
Métallurgie, Paris.

TiepeMa, T. J. (1949). Acta Cryst. 2, 261.

Yen, M. K. & HisBarp, W. R. (1949). Trans. Amer. Inst.
Min. (Metall.) Engrs, 185, 710.

Remarks on the Theory of Phase Limiting Inequalities and Equalities

By J. A. GOEDEOOP
Department of Physics, Pennsylvania State College, State College, Pa., U.S.A.

(Received 16 February 1950)

The inequalities derived by Karle & Hauptman are discussed in more detail. The simplifications re-
sulting from symmetry are studied, and it is shown that the relations derived by Harker & Kasper
are only those that correspond to the totally symmetric representation of the point group. In the
discrete-atom approximation, part of the inequalities reduces to equalities, special cases of which
have been reported earlier by Banerjee and by Buerger.

Introduction

By substituting the analytical expression of the
structure factor for the various symmetries in Schwarz’s
inequality, Harker & Kasper (1948) obtained a number
of relations that limit the real part of some structure

factors in terms of the magnitudes of others. In a
generalization of this work Karle & Hauptman (1949)
have shown that, independent of the symmetry, a set of
inequalities involving structure factors can be derived
from the fact that the electron density must be non-
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negative. This assumption is found to be implicit in the
treatment by Harker & Kasper.

In the present paper the application of symmetry
conditions to the Karle-Hauptman treatment is dis-
cussed. To facilitate the introduction of symmetry
operations the basic inequality is first derived in a
slightly modified way.

In the last section it will be shown that the usual
assumption of discrete atoms not only considerably
increases the power of the inequalities, but reduces
some of them to equalities.

1. Mathematical preliminaries

If f(r) and g(r) are functions of the position vector in
ordinary space r, both piecewise continuous, the scalar
product of the function-vectors f and g is defined as

(f.8)= ff* (r)g(r) dr,

where the integration is over the unit cell.f It follows
that (8-H=(f.8)* (1-2)

In particular we have

(£.5)= ff* (1) f(r) dr 0.

We now introduce a set of (n41) different functions
v?(r)(p=0,1,...,%), and suppose f(r) to be a linear
combination of these

fO)= 3 v o3(r) =t .o(r),

=0

(1)

(1-3)

(1-4)§

Here xzand v(r)are (n+ 1) x 1-dimensional matrices with
elements 2 and v?(r) respectively. We expand the left
side of the inequality in (1-3) in terms of the v? and find

n n
0< Y X xP*(ve.vP)ag,
p=0q9=0
0<zat. F.x, (1-6)

where the elements of the (n4-1) x (n+ 1) matrix F are

(1-5)

or, more concisely,

F?=(ve.v?). (1-7)
From (1-2) we see that this matrix is hermitian:
Fi=F2*, (1-8)

The inequality (1-6) has to hold for any x and is therefore
equivalent to the (4 1) inequalities

0<det™F  (m=0,1,...,n), (1-9)

where the determinants in the right are formed from F
by omitting all but the first (m+ 1) rows and columns.
Various other ways of stating this result will be found

1 See, for example, Murnaghan (1948). The function-vector
concept is at first intended as nothing but a convenient nota-
tion. In the last section it will help to make clear the analogy
between the continuous-density and discrete-atom treatments.

§ Matrix elements are labeled according to the following
convention: A2 is the element of matrix 4 in row p, column gq.
The adjoint matrix At has elements (4)t?=A4%*. An mxn
matrix is understood to have m rows and n columns. The
elements of column vectors carry a single superscript.
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useful in this paper. If F is partly diagonal, i.e.

F=diag(F,, F,,....,F,, ..., F}), (1-10)
then (1-9) is replaced by similar sets of inequalities for
each of the smaller matrices F,. In particular, if F is
completely diagonal (or brought into that form by a
transformation), we have for the characteristic numbers

0<A, (m=0,1,...,n). (1-11)

The last set of inequalities can of course also be obtained
directly from (1-6) by substituting successively all the
characteristic vectors z,,, defined by

F.x,=2,2, (m=0,1,...,n). (1-12)
Finally, the trace 7', of the determinants F, being equal
to the sum of their characteristic numbers, must also be
non-negative.

2. The Karle-Hauptman treatment
Let H, (p=0,1,...,n) (2-1)

be a set of different reciprocal-lattice vectors and p(r)
the electron density. Then we may take for the functions

vP(r) v?(r) =p(r)texp [2miH,.r]. (2-2)
By substituting this in (1-7), making use of the fact that

A0, (2:3)
we find for the elements of the matrix F

Ff:fp(r) exp [2mi(H,—H,).r]ldr =FHp_Hq, (2-4)

which are the Fourier coefficients of p(r) associated with
the reciprocal-lattice points H,~H, (p,¢=0,1,...,%).
Thus (1-9) gives us (n+1) inequalities involving these
structure factors. For each new reciprocal-lattice vector
that is added to the set H, one more inequality is ob-
tained. Apparently no generality is lost if we take
H,=0, since differences only of the vectors H, occur in
the determinants.

In Karle & Hauptman’s paper, expansions are given
for the determinants leading to expressions that limit
Fyg,, to a circle in the complex plane, the center and
radius of which are functions of the remaining structure
factors. Furthermore, it is shown that if the Fourier
coefficients obey (1-9), the electron density is non-
negative.

It should be noted that any system of inequalities
(1-9) contains the trivial relation

0< detOF =F}=F,. (2-5)
It may be factored out by carrying out the first step of
the diagonalization process

Pi.F.P=diag(F,, @), (2-6)
where 1 0 0 ..0
—Fyg,[Fy 1 0 ..0
P=| —Fg/Fy, 0 1 ..0] @7
—F;in/Fo 0 0 ...1
F, F¥ '
Hﬁ H‘I (p’q=1’2) "-’n)- (28)

and Gi=F A

242
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The remaining » inequalities are obtained by forming
determinants from the elements of @,

0<det™F (m=12,...,n) (2-9)
or 0<yt.G.y (2-10)
for any y. Nearly all the inequalities derived by Harker

& Kasper can be obtained from (2-10) by substituting
numerical values for the coefficients y?.

3. Special choices for the vector set H,

In the relations (1-9) the (m+1) diagonal elements
obviously are all Fj,. For each structure factor on one
side of the diagonal, its complex conjugate appears on
the opposite side. The number of different structure
factors, excluding Fy, therefore is m(m+1). However,
this number is a maximum and may be considerably
reduced by a special choice of the vectors H,,, in either of
two ways:

(A) Reduction of the number of different vectors
H,—H, For example, if in the case m=3, which in
general involves the 6 different reciprocal-lattice points

H,,

H, H,-H,

H, H;—H, H;-H,
we take H;=H,+ H,, this number is reduced to 4:

(31)

H,,
H, H,—H, (3-2)
H,+H, H, H,.

(For this system, the two inequalities

(Hm * FHz)z < (FO t Fnz+nl) (Fo + Fnzw-nl) (3:3)
hold if the structure factors are real. They were used by
Gillis (1948) in the case of oxalic acid dihydrate.)

Asno two of the vectors H, can be equal, the minimum
number of different vectors H,—H, is m. This limit is
reached by making the special choice

Hy=0, H,=p.H, (p=1,2,...,n; H+0), (34)
for then each of the vectors
H,—-H,=(p—g).H (3:3)
belongs to the set (3-4). The resulting inequalities could
of course be equally well derived from the fact that the
projection of p(r) on a line in the direction H must be a
non-negative function.

(B) A choice of the H, such that some of the reci-
procal-lattice vectors H,— H, are related by symmetry.
Then, of course, the corresponding structure factors are
no longer independent.

4. Use of symmetry conditions
Though the principle, referred to at the end of the last
section, may be applied in many different ways, we shall
discuss here only the very special choice

H,=0, H,=¢,.H H=+0), (¢1)}

1 Zachariasen’s (1945) notation for symmetry operations is
used.

(p=L2,...,s;

PHASE LIMITING INEQUALITIES AND EQUALITIES

where the ¢, are the symmetry operations of the point
group (or one of its subgroups) and s is its order. The
functions v,(r) as defined by (2-2) are now of the form
o0(r) =p(r)} ]
v?(r)=p(r)texp [2mig,. H.r]|
However, it will be found useful to introduce a different
set of functions

wd(r) =p(r)}

w?(r)=p(r)texp [2mH.r.8,]
where the §, are the operations of the space group,
related to those of the point group by

S,=[d5 t5], (4-4)
r.8,=r.¢, +t,. (4-5)
The relation between the v?(r) and w?(r) is therefore

wi(r) =’Do(l‘),
w?(r)=v?(r)exp [2miH. tp].}
Keeping in mind that p(r) is invariant under any S,
p(r.S,)=p(r), (47)
we find the following expressions for the matrix elements

P& (wo.wo=F,, (4-8)

(p=1,2,...,5). (42)

(r=12,...,s), (43)

ie.

(4-6)

(WO WP) = [p(r) exp[2miH.r.8,]dr=Fg, (4:9)

v

(we.w?)= | p(r)exp [2mH.r.(8,— 8;)]dr

=fp(r) exp[2mH.r.(S,—E)]dr

=F (4.5 .gexp[2miH.t,]. (4-10)

In the last equation
E=[1,0] (4-11)
is the identity operation and S, isrelated to §,and S, by
8,=8,.8,. (4-12)

There are of course (s—1) structure factors of the type
F\(4._1.m some of which may be equal, and thus the
total number of structure factors in the equations
(4-8-4-10), not counting Fy, iss. In this section a set of
inequalities will be derived, each of which contains all
these structure factors and includes earlier Harker—
Kasper relations. A simpler set, more suitable for
practical application, will be discussed in the next
section.

To transform F, we introduce a set of s new functions
by making linear combinations of the

w?(r) (p=1,2,...,s),

)= 2 TG00 (o512, 1

k b= . k). (4

3 2s 1=1,2, ). (4-13)
i=1
Here [T',(¢,)]5 is an element of the I, x I; dimensional
matrix corresponding to ¢, in the ith irreducible repre-



J. A, GOEDKOOP

sentation T; of the point group; % is the number of
classes. The matrix elements obtained from these new
functions are

(2}-235) = 2 Z T3 [Ts(@)IF*. (Wo. W), (4:14)

p=1g¢=1
We write ¢, as the product of ¢, and ¢, according to

(412) !
[T@)]= §1 [T - [Ta(Pr)]p
and use (4-11), finding
[ s
Zl 21 [Ti(@)I*. [T )] Zl [Ti(Pr)]5
v=1¢g= r=
(4-16)

The sum over q is at once found from the orthogonality
relation

(4-15)

(2)..235) =

x P4 _p.gexp[2mH.t,].

S [ [T@E = by by (417
a= i

where the &’s are Kronecker symbols, and so finally

(21, 2 =dubsyy 3 TUSNy-Fisyn.m
e x exp [2miH.t,]
(@B, y,e=1,2,..,0; 4,7=1,2,...,k).
Thus the matrix formed from the functions z{; has the
form diag (Fy, Fyy ..o, Fiyooos F3),

where the matrices F, are of dimension /2 x [Z. Their trace
is easily found

1; 1
T,=% X (zi-23)
a=1 ﬂ 1

(4-18)

L g 8 .
7 g [Ti$15. F s, mexp [2mH-t,]

. £M~
|| M

=53 X

{r)-F s, 1 .mexp[2mH.t,], (4-19)

where y; ¢,) is the trace (character) of T';(¢,). These
quantities must be non-negative,

S
0< 21 Xi(®:) F(,~p .mexp [2miH . t,].
r=

This set of inequalities may be strengthened somewhat
by adding our original function w(r) to the set (4-13).
The additional matrix elements are rapidly found from
(4-8) and (4-9):

(wO.w0)

(4-20)

- Fo’

~ [P (¢r ]%FH_‘S\HSFH

(4-21)

(W.2%) = (4-22)

r=
(T, isunderstood to be the totally symmetric representa-
tion.) F, is thus enlarged to a matrix of dimensions
2 x 2. From the non-negativity of its determinant we
have  (wo.zh).(zh,. wO) < (w.W0). (2} 2h),  (4:28)

or

s
s2.|Fg|t<s.Fy. ¥ Fy,p.mexp[2mH.t]. (424)
r=1
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This inequality is stronger than the first one of the set
(4-20), which differs from it in that the left side is zero.
It may be included in the complete set by writing

13 .
Su-| Frl*< 21 Xi(#:) F iy, .mexp[2miH. 1]
r=
(t=L,2,...,k). (4-25)
The first of these relations is easily recognized as the
general form of a large class of Harker-Kasper in-
equalities.] The remaining inequalities have been

ignored by these authors. All may be found directly
from (2-8) and (2-10) by substituting (4-1) and y? = x,(¢,)-

5. Inequalities involving a single phase angle

It was shown in § 3 that, in the absence of symmetry, the
number of different structure factors in the inequalities
(1-9) is at least m. However, the relation for m =1 does
not give any information on the phase of the single
structure factor it contains,

) (5-1)

and we may therefore state that no restrictions on single
phase angles can be found. The inequalities lead only to
relations between two or more phase angles.

Independent phase-angle determinations are no
longer impossible if the crystal possesses symmetry.
The necessary inequalities follow from the fact that each
of the 3 x 3 determinants with elements F?=(w?. w?)
(p,q=0,1,r, where r+0 or 1 and S, is understood to be
the identity operation E) of the matrix F' discussed in
the last section is non-negative,

F, F§ FE
0<|Fg Fy F 5 .mexp[—2mH.t,]
Fy F4,_p.nexp[2miH.t] F,
(r=2,8,...,8). (52)
This may be written
Fg,-n.1 2 Fy?
Yorn B onomn g 28 <1 |22 5.
’ 7, exp [2miH . t,] 1 7, (5-3)
or, in all cases where Fs ;) gexp[2miH.t,]is real,
Fg|* 1 1Fy p.m
_H| 4@ D.H omiH. .
7| S2t2 7 A, exp [2mH.t.]. (5-4)

Inequalities of this type may be used to determine the
phase angles of structure factors F, _;, gindependent
of any other phase angle. They are more suited for
practical application than the rather complicated set
(4-25), where each inequality contains all these structure
factors. (As a matter of fact, the % relations (4-25)
contain more than & different structure factors F 5 ;) u
if one or more classes contain symmetry operations with
different rotation axes; in these cases the relations (4-25)
may be made equivalent to (5-4) by the addition of the
inequalities of type (4-25) for the various subgroups.)
Clearly, for s=2 the two sets are identical.

1 A direct generalization of Harker & Kasper’s treatment
has been given by MacGillavry (1950).
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6. Equalities
From the first paper of Harker & Kasper on, use has
been made of the fact that the inequalities can be con-
siderably strengthened by assuming the electron-
density function to be the superposition of spherically
symmetrical atomic-density functions,
N
p0)= 3 Z;. (| £ =13, (6:1)
j=
where N is the number of atoms, Z; the atomic number

and r; the position of atom j. Instead of the Fyg, unitary
factors are then introduced,

N
Ug= Y n;exp[2miH.r;), (6-2)
i=1
where n;= NZj (6:3)
> Z;
j=1

is the fraction of the electrons that belongs to the jth
atom. If f(H) is the Fourier transform of ¢(r), the rela-
tion between the Fg and Uy is

Fg

UH= - N
fH) X Z;
i=1

(6-4)

. We now introduce the (n+ 1) x N-dimensional matrix v
with elements

vP=niexp[2mH,.1;] (p=0,1,...,2; §=1,2,...,N),
(6:5)
and another matrix, of dimension (n+1) x (n+1),
U=v.vt. (6-6)
Let the rows of v be denoted by »?, then
N
Ui =v?. 0% = 3 vP.0f, (6-7)
j=1
and by substitution of (6-5) and (6-2)
Up= Unp—nq- (6-8)

Thus U is analogous with the matrix F, defined in (2-4),
but its elements are the unitary structure factors
(Fourier coefficients of the atomic peak function) in the
reciprocal-lattice points H,— H,. The same inequalities
hold therefore. However, U has the additional property
(6-6) [compare also (6-7) with (1-7)] and as a consequence
of this
det™ U=det™ (v.v1) 20 ifm<N

=0 ifm>N. (69)
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(To show this, one writes

2t .U.x=xt.v.vt.2=@F.2)t. (vF.2)=yt.y=0;
(6-10)
then, if 7 has more columns than rows, an x+0 can
always be found such that y=v}.2z=0; this requires
U.z=0 for 40 and thus det U =0.)

This result may be stated: if in our original set of
inequalities (1-9) the FHP_HQ are replaced by unitary
structure factors, those with m > N reduce to equalities.

Special cases of these equalities have already been
described earlier:

(@) For the particular choice (3-4) for the base vectors

H, we have U3=Uo.x (6:11)

and the equality with m=N of the set (6-9) is the
general form of the equations derived by Banerjee
(1933).

(b) If there is one atom per asymmetric unit, i.e.
N=s, and we choose the set (4-1) (i.e. n=s), the
determinant of the matrix F in §4 must be zero. Con-
sequently, the equality sign must hold in at least one of
the relations (4-25). It has already been shown by
Buerger (1948) that this is the case for the first of these
relations.
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